3.3.1 \(\int \frac {2+3 x^2}{(3+5 x^2+x^4)^{3/2}} \, dx\) [201]

3.3.1.1 Optimal result
3.3.1.2 Mathematica [C] (warning: unable to verify)
3.3.1.3 Rubi [A] (verified)
3.3.1.4 Maple [A] (verified)
3.3.1.5 Fricas [A] (verification not implemented)
3.3.1.6 Sympy [F]
3.3.1.7 Maxima [F]
3.3.1.8 Giac [F]
3.3.1.9 Mupad [F(-1)]

3.3.1.1 Optimal result

Integrand size = 22, antiderivative size = 282 \[ \int \frac {2+3 x^2}{\left (3+5 x^2+x^4\right )^{3/2}} \, dx=\frac {4 x \left (5+\sqrt {13}+2 x^2\right )}{39 \sqrt {3+5 x^2+x^4}}-\frac {x \left (7+8 x^2\right )}{39 \sqrt {3+5 x^2+x^4}}-\frac {2 \sqrt {\frac {2}{3} \left (5+\sqrt {13}\right )} \sqrt {\frac {6+\left (5-\sqrt {13}\right ) x^2}{6+\left (5+\sqrt {13}\right ) x^2}} \left (6+\left (5+\sqrt {13}\right ) x^2\right ) E\left (\arctan \left (\sqrt {\frac {1}{6} \left (5+\sqrt {13}\right )} x\right )|\frac {1}{6} \left (-13+5 \sqrt {13}\right )\right )}{39 \sqrt {3+5 x^2+x^4}}+\frac {11 \sqrt {\frac {6+\left (5-\sqrt {13}\right ) x^2}{6+\left (5+\sqrt {13}\right ) x^2}} \left (6+\left (5+\sqrt {13}\right ) x^2\right ) \operatorname {EllipticF}\left (\arctan \left (\sqrt {\frac {1}{6} \left (5+\sqrt {13}\right )} x\right ),\frac {1}{6} \left (-13+5 \sqrt {13}\right )\right )}{13 \sqrt {6 \left (5+\sqrt {13}\right )} \sqrt {3+5 x^2+x^4}} \]

output
-1/39*x*(8*x^2+7)/(x^4+5*x^2+3)^(1/2)+4/39*x*(5+2*x^2+13^(1/2))/(x^4+5*x^2 
+3)^(1/2)-2/117*(1/(36+x^2*(30+6*13^(1/2))))^(1/2)*(36+x^2*(30+6*13^(1/2)) 
)^(1/2)*EllipticE(x*(30+6*13^(1/2))^(1/2)/(36+x^2*(30+6*13^(1/2)))^(1/2),1 
/6*(-78+30*13^(1/2))^(1/2))*(6+x^2*(5+13^(1/2)))*(30+6*13^(1/2))^(1/2)*((6 
+x^2*(5-13^(1/2)))/(6+x^2*(5+13^(1/2))))^(1/2)/(x^4+5*x^2+3)^(1/2)+11/13*( 
1/(36+x^2*(30+6*13^(1/2))))^(1/2)*(36+x^2*(30+6*13^(1/2)))^(1/2)*EllipticF 
(x*(30+6*13^(1/2))^(1/2)/(36+x^2*(30+6*13^(1/2)))^(1/2),1/6*(-78+30*13^(1/ 
2))^(1/2))*(6+x^2*(5+13^(1/2)))*((6+x^2*(5-13^(1/2)))/(6+x^2*(5+13^(1/2))) 
)^(1/2)/(x^4+5*x^2+3)^(1/2)/(30+6*13^(1/2))^(1/2)
 
3.3.1.2 Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 10.25 (sec) , antiderivative size = 219, normalized size of antiderivative = 0.78 \[ \int \frac {2+3 x^2}{\left (3+5 x^2+x^4\right )^{3/2}} \, dx=\frac {-2 x \left (7+8 x^2\right )+4 i \sqrt {2} \left (-5+\sqrt {13}\right ) \sqrt {\frac {-5+\sqrt {13}-2 x^2}{-5+\sqrt {13}}} \sqrt {5+\sqrt {13}+2 x^2} E\left (i \text {arcsinh}\left (\sqrt {\frac {2}{5+\sqrt {13}}} x\right )|\frac {19}{6}+\frac {5 \sqrt {13}}{6}\right )-i \sqrt {2} \left (13+4 \sqrt {13}\right ) \sqrt {\frac {-5+\sqrt {13}-2 x^2}{-5+\sqrt {13}}} \sqrt {5+\sqrt {13}+2 x^2} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {\frac {2}{5+\sqrt {13}}} x\right ),\frac {19}{6}+\frac {5 \sqrt {13}}{6}\right )}{78 \sqrt {3+5 x^2+x^4}} \]

input
Integrate[(2 + 3*x^2)/(3 + 5*x^2 + x^4)^(3/2),x]
 
output
(-2*x*(7 + 8*x^2) + (4*I)*Sqrt[2]*(-5 + Sqrt[13])*Sqrt[(-5 + Sqrt[13] - 2* 
x^2)/(-5 + Sqrt[13])]*Sqrt[5 + Sqrt[13] + 2*x^2]*EllipticE[I*ArcSinh[Sqrt[ 
2/(5 + Sqrt[13])]*x], 19/6 + (5*Sqrt[13])/6] - I*Sqrt[2]*(13 + 4*Sqrt[13]) 
*Sqrt[(-5 + Sqrt[13] - 2*x^2)/(-5 + Sqrt[13])]*Sqrt[5 + Sqrt[13] + 2*x^2]* 
EllipticF[I*ArcSinh[Sqrt[2/(5 + Sqrt[13])]*x], 19/6 + (5*Sqrt[13])/6])/(78 
*Sqrt[3 + 5*x^2 + x^4])
 
3.3.1.3 Rubi [A] (verified)

Time = 0.35 (sec) , antiderivative size = 292, normalized size of antiderivative = 1.04, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.227, Rules used = {1492, 25, 1503, 1412, 1455}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {3 x^2+2}{\left (x^4+5 x^2+3\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 1492

\(\displaystyle -\frac {1}{39} \int -\frac {8 x^2+33}{\sqrt {x^4+5 x^2+3}}dx-\frac {x \left (8 x^2+7\right )}{39 \sqrt {x^4+5 x^2+3}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {1}{39} \int \frac {8 x^2+33}{\sqrt {x^4+5 x^2+3}}dx-\frac {x \left (8 x^2+7\right )}{39 \sqrt {x^4+5 x^2+3}}\)

\(\Big \downarrow \) 1503

\(\displaystyle \frac {1}{39} \left (33 \int \frac {1}{\sqrt {x^4+5 x^2+3}}dx+8 \int \frac {x^2}{\sqrt {x^4+5 x^2+3}}dx\right )-\frac {x \left (8 x^2+7\right )}{39 \sqrt {x^4+5 x^2+3}}\)

\(\Big \downarrow \) 1412

\(\displaystyle \frac {1}{39} \left (8 \int \frac {x^2}{\sqrt {x^4+5 x^2+3}}dx+\frac {11 \sqrt {\frac {3}{2 \left (5+\sqrt {13}\right )}} \sqrt {\frac {\left (5-\sqrt {13}\right ) x^2+6}{\left (5+\sqrt {13}\right ) x^2+6}} \left (\left (5+\sqrt {13}\right ) x^2+6\right ) \operatorname {EllipticF}\left (\arctan \left (\sqrt {\frac {1}{6} \left (5+\sqrt {13}\right )} x\right ),\frac {1}{6} \left (-13+5 \sqrt {13}\right )\right )}{\sqrt {x^4+5 x^2+3}}\right )-\frac {x \left (8 x^2+7\right )}{39 \sqrt {x^4+5 x^2+3}}\)

\(\Big \downarrow \) 1455

\(\displaystyle \frac {1}{39} \left (\frac {11 \sqrt {\frac {3}{2 \left (5+\sqrt {13}\right )}} \sqrt {\frac {\left (5-\sqrt {13}\right ) x^2+6}{\left (5+\sqrt {13}\right ) x^2+6}} \left (\left (5+\sqrt {13}\right ) x^2+6\right ) \operatorname {EllipticF}\left (\arctan \left (\sqrt {\frac {1}{6} \left (5+\sqrt {13}\right )} x\right ),\frac {1}{6} \left (-13+5 \sqrt {13}\right )\right )}{\sqrt {x^4+5 x^2+3}}+8 \left (\frac {x \left (2 x^2+\sqrt {13}+5\right )}{2 \sqrt {x^4+5 x^2+3}}-\frac {\sqrt {\frac {1}{6} \left (5+\sqrt {13}\right )} \sqrt {\frac {\left (5-\sqrt {13}\right ) x^2+6}{\left (5+\sqrt {13}\right ) x^2+6}} \left (\left (5+\sqrt {13}\right ) x^2+6\right ) E\left (\arctan \left (\sqrt {\frac {1}{6} \left (5+\sqrt {13}\right )} x\right )|\frac {1}{6} \left (-13+5 \sqrt {13}\right )\right )}{2 \sqrt {x^4+5 x^2+3}}\right )\right )-\frac {x \left (8 x^2+7\right )}{39 \sqrt {x^4+5 x^2+3}}\)

input
Int[(2 + 3*x^2)/(3 + 5*x^2 + x^4)^(3/2),x]
 
output
-1/39*(x*(7 + 8*x^2))/Sqrt[3 + 5*x^2 + x^4] + (8*((x*(5 + Sqrt[13] + 2*x^2 
))/(2*Sqrt[3 + 5*x^2 + x^4]) - (Sqrt[(5 + Sqrt[13])/6]*Sqrt[(6 + (5 - Sqrt 
[13])*x^2)/(6 + (5 + Sqrt[13])*x^2)]*(6 + (5 + Sqrt[13])*x^2)*EllipticE[Ar 
cTan[Sqrt[(5 + Sqrt[13])/6]*x], (-13 + 5*Sqrt[13])/6])/(2*Sqrt[3 + 5*x^2 + 
 x^4])) + (11*Sqrt[3/(2*(5 + Sqrt[13]))]*Sqrt[(6 + (5 - Sqrt[13])*x^2)/(6 
+ (5 + Sqrt[13])*x^2)]*(6 + (5 + Sqrt[13])*x^2)*EllipticF[ArcTan[Sqrt[(5 + 
 Sqrt[13])/6]*x], (-13 + 5*Sqrt[13])/6])/Sqrt[3 + 5*x^2 + x^4])/39
 

3.3.1.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 1412
Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b 
^2 - 4*a*c, 2]}, Simp[(2*a + (b + q)*x^2)*(Sqrt[(2*a + (b - q)*x^2)/(2*a + 
(b + q)*x^2)]/(2*a*Rt[(b + q)/(2*a), 2]*Sqrt[a + b*x^2 + c*x^4]))*EllipticF 
[ArcTan[Rt[(b + q)/(2*a), 2]*x], 2*(q/(b + q))], x] /; PosQ[(b + q)/a] && 
!(PosQ[(b - q)/a] && SimplerSqrtQ[(b - q)/(2*a), (b + q)/(2*a)])] /; FreeQ[ 
{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0]
 

rule 1455
Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = 
 Rt[b^2 - 4*a*c, 2]}, Simp[x*((b + q + 2*c*x^2)/(2*c*Sqrt[a + b*x^2 + c*x^4 
])), x] - Simp[Rt[(b + q)/(2*a), 2]*(2*a + (b + q)*x^2)*(Sqrt[(2*a + (b - q 
)*x^2)/(2*a + (b + q)*x^2)]/(2*c*Sqrt[a + b*x^2 + c*x^4]))*EllipticE[ArcTan 
[Rt[(b + q)/(2*a), 2]*x], 2*(q/(b + q))], x] /; PosQ[(b + q)/a] &&  !(PosQ[ 
(b - q)/a] && SimplerSqrtQ[(b - q)/(2*a), (b + q)/(2*a)])] /; FreeQ[{a, b, 
c}, x] && GtQ[b^2 - 4*a*c, 0]
 

rule 1492
Int[((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symb 
ol] :> Simp[x*(a*b*e - d*(b^2 - 2*a*c) - c*(b*d - 2*a*e)*x^2)*((a + b*x^2 + 
 c*x^4)^(p + 1)/(2*a*(p + 1)*(b^2 - 4*a*c))), x] + Simp[1/(2*a*(p + 1)*(b^2 
 - 4*a*c))   Int[Simp[(2*p + 3)*d*b^2 - a*b*e - 2*a*c*d*(4*p + 5) + (4*p + 
7)*(d*b - 2*a*e)*c*x^2, x]*(a + b*x^2 + c*x^4)^(p + 1), x], x] /; FreeQ[{a, 
 b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && 
 LtQ[p, -1] && IntegerQ[2*p]
 

rule 1503
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[d   Int[1/Sqrt[a + b*x^2 + c*x^4] 
, x], x] + Simp[e   Int[x^2/Sqrt[a + b*x^2 + c*x^4], x], x] /; PosQ[(b + q) 
/a] || PosQ[(b - q)/a]] /; FreeQ[{a, b, c, d, e}, x] && GtQ[b^2 - 4*a*c, 0]
 
3.3.1.4 Maple [A] (verified)

Time = 1.31 (sec) , antiderivative size = 216, normalized size of antiderivative = 0.77

method result size
risch \(-\frac {x \left (8 x^{2}+7\right )}{39 \sqrt {x^{4}+5 x^{2}+3}}+\frac {66 \sqrt {1-\left (-\frac {5}{6}+\frac {\sqrt {13}}{6}\right ) x^{2}}\, \sqrt {1-\left (-\frac {5}{6}-\frac {\sqrt {13}}{6}\right ) x^{2}}\, F\left (\frac {x \sqrt {-30+6 \sqrt {13}}}{6}, \frac {5 \sqrt {3}}{6}+\frac {\sqrt {39}}{6}\right )}{13 \sqrt {-30+6 \sqrt {13}}\, \sqrt {x^{4}+5 x^{2}+3}}-\frac {96 \sqrt {1-\left (-\frac {5}{6}+\frac {\sqrt {13}}{6}\right ) x^{2}}\, \sqrt {1-\left (-\frac {5}{6}-\frac {\sqrt {13}}{6}\right ) x^{2}}\, \left (F\left (\frac {x \sqrt {-30+6 \sqrt {13}}}{6}, \frac {5 \sqrt {3}}{6}+\frac {\sqrt {39}}{6}\right )-E\left (\frac {x \sqrt {-30+6 \sqrt {13}}}{6}, \frac {5 \sqrt {3}}{6}+\frac {\sqrt {39}}{6}\right )\right )}{13 \sqrt {-30+6 \sqrt {13}}\, \sqrt {x^{4}+5 x^{2}+3}\, \left (5+\sqrt {13}\right )}\) \(216\)
elliptic \(-\frac {2 \left (\frac {4}{39} x^{3}+\frac {7}{78} x \right )}{\sqrt {x^{4}+5 x^{2}+3}}+\frac {66 \sqrt {1-\left (-\frac {5}{6}+\frac {\sqrt {13}}{6}\right ) x^{2}}\, \sqrt {1-\left (-\frac {5}{6}-\frac {\sqrt {13}}{6}\right ) x^{2}}\, F\left (\frac {x \sqrt {-30+6 \sqrt {13}}}{6}, \frac {5 \sqrt {3}}{6}+\frac {\sqrt {39}}{6}\right )}{13 \sqrt {-30+6 \sqrt {13}}\, \sqrt {x^{4}+5 x^{2}+3}}-\frac {96 \sqrt {1-\left (-\frac {5}{6}+\frac {\sqrt {13}}{6}\right ) x^{2}}\, \sqrt {1-\left (-\frac {5}{6}-\frac {\sqrt {13}}{6}\right ) x^{2}}\, \left (F\left (\frac {x \sqrt {-30+6 \sqrt {13}}}{6}, \frac {5 \sqrt {3}}{6}+\frac {\sqrt {39}}{6}\right )-E\left (\frac {x \sqrt {-30+6 \sqrt {13}}}{6}, \frac {5 \sqrt {3}}{6}+\frac {\sqrt {39}}{6}\right )\right )}{13 \sqrt {-30+6 \sqrt {13}}\, \sqrt {x^{4}+5 x^{2}+3}\, \left (5+\sqrt {13}\right )}\) \(217\)
default \(-\frac {4 \left (-\frac {19}{78} x -\frac {5}{78} x^{3}\right )}{\sqrt {x^{4}+5 x^{2}+3}}+\frac {66 \sqrt {1-\left (-\frac {5}{6}+\frac {\sqrt {13}}{6}\right ) x^{2}}\, \sqrt {1-\left (-\frac {5}{6}-\frac {\sqrt {13}}{6}\right ) x^{2}}\, F\left (\frac {x \sqrt {-30+6 \sqrt {13}}}{6}, \frac {5 \sqrt {3}}{6}+\frac {\sqrt {39}}{6}\right )}{13 \sqrt {-30+6 \sqrt {13}}\, \sqrt {x^{4}+5 x^{2}+3}}-\frac {96 \sqrt {1-\left (-\frac {5}{6}+\frac {\sqrt {13}}{6}\right ) x^{2}}\, \sqrt {1-\left (-\frac {5}{6}-\frac {\sqrt {13}}{6}\right ) x^{2}}\, \left (F\left (\frac {x \sqrt {-30+6 \sqrt {13}}}{6}, \frac {5 \sqrt {3}}{6}+\frac {\sqrt {39}}{6}\right )-E\left (\frac {x \sqrt {-30+6 \sqrt {13}}}{6}, \frac {5 \sqrt {3}}{6}+\frac {\sqrt {39}}{6}\right )\right )}{13 \sqrt {-30+6 \sqrt {13}}\, \sqrt {x^{4}+5 x^{2}+3}\, \left (5+\sqrt {13}\right )}-\frac {6 \left (\frac {1}{13} x^{3}+\frac {5}{26} x \right )}{\sqrt {x^{4}+5 x^{2}+3}}\) \(240\)

input
int((3*x^2+2)/(x^4+5*x^2+3)^(3/2),x,method=_RETURNVERBOSE)
 
output
-1/39*x*(8*x^2+7)/(x^4+5*x^2+3)^(1/2)+66/13/(-30+6*13^(1/2))^(1/2)*(1-(-5/ 
6+1/6*13^(1/2))*x^2)^(1/2)*(1-(-5/6-1/6*13^(1/2))*x^2)^(1/2)/(x^4+5*x^2+3) 
^(1/2)*EllipticF(1/6*x*(-30+6*13^(1/2))^(1/2),5/6*3^(1/2)+1/6*39^(1/2))-96 
/13/(-30+6*13^(1/2))^(1/2)*(1-(-5/6+1/6*13^(1/2))*x^2)^(1/2)*(1-(-5/6-1/6* 
13^(1/2))*x^2)^(1/2)/(x^4+5*x^2+3)^(1/2)/(5+13^(1/2))*(EllipticF(1/6*x*(-3 
0+6*13^(1/2))^(1/2),5/6*3^(1/2)+1/6*39^(1/2))-EllipticE(1/6*x*(-30+6*13^(1 
/2))^(1/2),5/6*3^(1/2)+1/6*39^(1/2)))
 
3.3.1.5 Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 179, normalized size of antiderivative = 0.63 \[ \int \frac {2+3 x^2}{\left (3+5 x^2+x^4\right )^{3/2}} \, dx=-\frac {8 \, {\left (\sqrt {13} \sqrt {6} \sqrt {3} {\left (x^{4} + 5 \, x^{2} + 3\right )} - 5 \, \sqrt {6} \sqrt {3} {\left (x^{4} + 5 \, x^{2} + 3\right )}\right )} \sqrt {\sqrt {13} - 5} E(\arcsin \left (\frac {1}{6} \, \sqrt {6} x \sqrt {\sqrt {13} - 5}\right )\,|\,\frac {5}{6} \, \sqrt {13} + \frac {19}{6}) + 5 \, {\left (5 \, \sqrt {13} \sqrt {6} \sqrt {3} {\left (x^{4} + 5 \, x^{2} + 3\right )} + 41 \, \sqrt {6} \sqrt {3} {\left (x^{4} + 5 \, x^{2} + 3\right )}\right )} \sqrt {\sqrt {13} - 5} F(\arcsin \left (\frac {1}{6} \, \sqrt {6} x \sqrt {\sqrt {13} - 5}\right )\,|\,\frac {5}{6} \, \sqrt {13} + \frac {19}{6}) + 36 \, \sqrt {x^{4} + 5 \, x^{2} + 3} {\left (8 \, x^{3} + 7 \, x\right )}}{1404 \, {\left (x^{4} + 5 \, x^{2} + 3\right )}} \]

input
integrate((3*x^2+2)/(x^4+5*x^2+3)^(3/2),x, algorithm="fricas")
 
output
-1/1404*(8*(sqrt(13)*sqrt(6)*sqrt(3)*(x^4 + 5*x^2 + 3) - 5*sqrt(6)*sqrt(3) 
*(x^4 + 5*x^2 + 3))*sqrt(sqrt(13) - 5)*elliptic_e(arcsin(1/6*sqrt(6)*x*sqr 
t(sqrt(13) - 5)), 5/6*sqrt(13) + 19/6) + 5*(5*sqrt(13)*sqrt(6)*sqrt(3)*(x^ 
4 + 5*x^2 + 3) + 41*sqrt(6)*sqrt(3)*(x^4 + 5*x^2 + 3))*sqrt(sqrt(13) - 5)* 
elliptic_f(arcsin(1/6*sqrt(6)*x*sqrt(sqrt(13) - 5)), 5/6*sqrt(13) + 19/6) 
+ 36*sqrt(x^4 + 5*x^2 + 3)*(8*x^3 + 7*x))/(x^4 + 5*x^2 + 3)
 
3.3.1.6 Sympy [F]

\[ \int \frac {2+3 x^2}{\left (3+5 x^2+x^4\right )^{3/2}} \, dx=\int \frac {3 x^{2} + 2}{\left (x^{4} + 5 x^{2} + 3\right )^{\frac {3}{2}}}\, dx \]

input
integrate((3*x**2+2)/(x**4+5*x**2+3)**(3/2),x)
 
output
Integral((3*x**2 + 2)/(x**4 + 5*x**2 + 3)**(3/2), x)
 
3.3.1.7 Maxima [F]

\[ \int \frac {2+3 x^2}{\left (3+5 x^2+x^4\right )^{3/2}} \, dx=\int { \frac {3 \, x^{2} + 2}{{\left (x^{4} + 5 \, x^{2} + 3\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate((3*x^2+2)/(x^4+5*x^2+3)^(3/2),x, algorithm="maxima")
 
output
integrate((3*x^2 + 2)/(x^4 + 5*x^2 + 3)^(3/2), x)
 
3.3.1.8 Giac [F]

\[ \int \frac {2+3 x^2}{\left (3+5 x^2+x^4\right )^{3/2}} \, dx=\int { \frac {3 \, x^{2} + 2}{{\left (x^{4} + 5 \, x^{2} + 3\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate((3*x^2+2)/(x^4+5*x^2+3)^(3/2),x, algorithm="giac")
 
output
integrate((3*x^2 + 2)/(x^4 + 5*x^2 + 3)^(3/2), x)
 
3.3.1.9 Mupad [F(-1)]

Timed out. \[ \int \frac {2+3 x^2}{\left (3+5 x^2+x^4\right )^{3/2}} \, dx=\int \frac {3\,x^2+2}{{\left (x^4+5\,x^2+3\right )}^{3/2}} \,d x \]

input
int((3*x^2 + 2)/(5*x^2 + x^4 + 3)^(3/2),x)
 
output
int((3*x^2 + 2)/(5*x^2 + x^4 + 3)^(3/2), x)